
CPS331 Lecture: Coping with Uncertainty; Discussion of Dreyfus Reading
 

Last revised September 10, 2018

 Objectives:

1. To discuss ways of handling uncertainty (probability; Mycin CF) 
2. To discuss Dreyfus’ views on “expert” systems

Materials: 

1. Slide show of Green / Blue Cab Problem
2. Dreyfus Discussion Question

I. Coping With Uncertainty

A.We saw earlier that knowledge representation is a key problem in AI.  
One issue in knowledge representation poses a particular challenge for 
work in expert systems, and hence was discussed in Cawsey’s 
discussion of Mycin: the problem of uncertain knowledge.

1. In the case of factual knowledge, we may think a certain fact is 
true, but may not be totally sure of it.  For example, a medical 
diagnostic system may need to know the date on which a certain 
symptom first appeared, but the patient may only be able to say “I 
think it was last Friday, but I'm not sure.”

2. Further, a given heuristic rule in an expert system may work most 
of the time, but not always.  For example, a given set of symptoms 
may indicate a certain disease 90% of the time, but not always.  
(We will see later that this was a key issue in the development of  
the MYCIN system.)

a) In particular, uncertain rules often arise in expert systems that do 
diagnosis because of the need to do abductive reasoning.
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(1)It is often the case that, given a problem, we may list  
symptoms that are generally present when the problem is 
present. That is, we can say:  
 

problem → symptoms  
 

and if we know the problem, we can infer the symptoms with 
a high degree of certainty, using modus ponens.

(2)However, diagnostic systems are required to reason the other  
way - from symptoms to the problem.  This is abductive 
reasoning, which is not sound.  The best that can be said is that 
when certain symptoms are present, a given problem is  a 
likely cause.  
 

Example: Suppose a person walks into the room with wet hair.  
What are you likely to think?  
 

ASK  
 

Certainly, if it is raining heavily outside, someone walking to 
class without an umbrella will get we hair.  But wet hair might 
also be caused by a person rushing out of the shower to get to 
class, or someone pulling a prank with a squirt gun, or ...

b) However, this is not the only source of uncertainty.  To go back to 
our example of problems and symptoms, in medicine it is often the 
case that certain symptoms of a given disease appear in most, but 
not all, of the patients with that disease.  Thus, even the inference  
 

problem → symptom 
 

is uncertain.

B. Several different approaches have been explored to reasoning when 
facts and/or rules involve uncertainty.  We will look at two.

1. An approach based on probabilities and Bayes' theorem.

2. The approach used by MYCIN  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C. One approach to uncertainty is based on a branch of mathematics 
known as probability theory.  This has the  advantage of bringing years 
of work in mathematics to bear on the problem.  Unfortunately. it also 
has a major practical limitation.

1. Instead of representing facts by boolean predicates, we may 
represent  them by probabilities - with a 0 meaning that a given 
statement is known to certainly be false, a 1 meaning that it is 
known to certainly be true, and a value between 0 and 1 expressing 
different degrees of likelihood that it is true.

a) We denote the a-priori probability of some statement S by P(S).  
The a-priori probability of a statement is simply the fraction of 
the cases in which the statement will be true in a random sample  
 

Example: The a-priori probability that a randomly chosen 
person is male is about 1/2, so we may write P(male) = 0.5

b) We also must deal with conditional probabilities - i.e. if we 
already have some evidence about a situation, then the 
probability of a certain outcome may differ.  
 

Example: The conditional probability that a randomly chosen 
Gordon student is male is only about 1/3, so we write  
P(male | Gordon student) = 0.33

2. Similarly, we may associate a probability with a rule, expressing 
the probability that the conclusion is true, given the truth of the  
premises.  
 
Example: Consider the following automobile diagnosis rule  
 
if the car won't start  

the starter does not turn  
the lights don't come on  

 
then replace the battery  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Suppose that 2% of the time, when all three premises are true, the 
problem turns out to be something other than the battery.  Then we 
would associate a probability of 98% with this rule.  
 
i.e. P(battery | ¬start ^ ¬starter turns ^ ¬lights) = 0.98

3. In the case of expert systems doing diagnostic reasoning, it turns out 
that the probabilities we need are often not directly available.  
 
Example: Suppose we wanted to associate a probability with the rule  
 
if

the patient has a fever  
    the patient has red spots  
then

the patient has measles

a) What we need to know is “in a population of individuals having 
a fever and red spots, what fraction have measles?”  This data 
may not be readily available, however.

b) There is a way to calculate this, though, using a theorem known 
as Bayes’ theorem and more readily available information 

(1) Bayes’ theorem says  
 

P(H | E) = P(E | H) * P(H) 
------------------  
      P(E)  

 
i.e. the probability of some hypothesis (e.g. the patient has 
measles) given some evidence (e.g. the patient has a fever 
and red spots) is equal to  
• the probability of the evidence given the hypothesis (e.g. 
that a patient with measles will have a fever and red spots)  

�4



• times the intrinsic probability of the hypothesis (e.g. that a 
person chosen at random has measles)  
• divided by the intrinsic probability of the evidence (e.g. that 
a person  chosen at random has a fever and red spots)

(2)To use Bayes’ theorem in this case, we would need to know  
 
ASK

(a)The fraction of patients with measles who have a fever

(b)The fraction of patients with measles who have red spots

(c)The fraction of people in general who have measles 

(d)The fraction of people in general who have a fever

(e)The fraction of people in general who have red spots

(f)The fraction of people who have a fever who also have 
red spots  
 
(This example illustrates that a large amount of 
information may be necessary to apply probability theory 
rigorously.)

(3)An example of using Bayes’ theorem

(a)Consider the following story (from the portion of the 
Dreyfus chapter you were not required to read, but may 
have chosen to read)  
 
"Two cab companies operate in a city, the Blue and the 
Green, the names coming from the colors of their cabs.  
Of all taxis, 85 percent are Blue, and 15 percent are 
Green.  One night, a taxi was involved in a hit-and-run 
accident.  No information is available about how many 
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cabs of each color were on duty that night or what cabs 
were in that part of the city at the time of the accident.  A 
witness identified the cab as Green.  The court tested the 
witness's ability to distinguish between Blue and Green 
cabs at night under the same conditions as were present at 
the time of the accident and found that the witness was 
able to identify the color of a cab correctly 80 percent of 
the time and was wrong 20 percent of the time.  What are 
the chances that that the cab involved in the accident was  
Green as claimed by the witness?

(b)How many of you have had a chance to try this mental 
experiment as Dreyfus suggested?  What did you 
conclude?  
 

ASK  
 

PROJECT and work through slide show

(c)Recall that Bayes’ theorem tells us  
 

P(H | E) = P(E | H) * P(H) 
------------------  

      P(E)  
 

where, in this case H (the hypothesis) is that the cab was 
actually green, and E (the evidence) is that the witness 
would say it was green  

i) P(E | H ) is simply the probability that the witness will 
say the cab is Green if it is.  We are told that the 
witness’s statements are true 80% of the time, so we 
take this to be 0.8.

ii) P(H) is simply the a-priori probability that the cab is 
Green.  Given that only 15% of the cabs are Green, (and 
assuming that there is no difference in accident rate 
between Green and Blue cabs), we take this to be 0.15.
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iii)P(E) is the a-priori probability that the witness says that a 
given cab is Green.  We are not told this, but can 
calculate it from:  
 

P(says Green)  
= P(says Green ^ is Green) + P(says Green  ^ is not 
Green )  
= P (says Green | is Green) * P (is Green) + P (says Green 
| ¬ Green) * P (¬ Green)  
= 0.8 * 0.15 + 0.2 * 0.85 = 0.12 + 0.17 = 0.29

(d)Hence P (H | E ) = 0.8 * 0.15 / 0.29 = .41 (as Dreyfus 
claimed in the chapter!)

D.Instead of using true probabilities, expert systems may use confidence 
levels.

1. These look a bit like probabilities, but they are not.  

2. We will consider here the approach taken by MYCIN, which has 
been followed by many other systems.  This approach is sometimes 
called the Stanford Certainty Factor Algebra, because MYCIN was 
developed at Stanford.

a) MYCIN used an ad-hoc approach based on confidence levels, 
with no attempt to treat them rigorously as probabilities.

b) Further, instead of ranging from 0 .. 1, like probabilities,  
MYCIN's confidence levels ranged from -1 to +1, with -1 
meaning "I am certain this is not the case" and +1 meaning "I 
am certain this is the case".  A confidence level of 0 would  
mean "I have no idea whether this is true or false."  
 

Note: MYCIN actually records two measures of confidence for 
any piece of information - a measure of belief (MB) and a 
measure of disbelief (MD).  [ Generally one of these is 0. ] The 
confidence factor is defined  as MB - MD.
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c) In forming conclusions, MYCIN treated any conclusion with  
certainty -0.2 .. +0.2 as unsupported in either the positive  or 
negative direction; -1 .. -0.2 as probably false, and +0.2 .. +1 as 
probably true.  If a rule requires that a certain antecedent hold, 
then it will only fire if the certainty associated with that 
antecedent is at least 0.2 (i.e. -1.0 .. 0.2 is regarded  as not true.)  
Likewise, if a rule requires that a certain antecedent not hold, 
then it will fire only if the certainty associated with that 
antecedent is <= -0.2 (i.e -0.2 .. 1.0 is regarded as not false.)

d) For output to the user, the certainty factor was converted to an  
appropriate English qualifier such as "there is weak evidence 
that ..." or "there is suggestive evidence that ..." or "there is  
strong evidence that ..."

3. In MYCIN, both facts and rules can have certainty factors associated 
with them.  In particular, rules normally qualify their conclusion by a 
certainty factor, like the following actual MYCIN rule.  
 
if:

the stain of the organism is gramneg  
    the morphology of the organism is rod  
    the patient is a compromised host  
 

then:

conclude that the identity of the organism is pseudomonas  
    with confidence 0.6.

4. MYCIN combined certainties as follows:

a) The certainty of the conclusion of a rule is the certainty associated 
with the rule itself (e.g. 0.6 in the case cited above) * the 
MINIMUM certainty of any antecedent.  (But note that if any 
antecedent has certainty < 0.2, then the rule won't fire at all.)
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b) However, the way the antecedents are phrased affected this. 
Some comparison functions that can be used in stating 
antecedents return a numeric value between -1 and 1, while 
others simply report either false or true (the former if the 
numeric certainty is < 0.2, the latter if it is >= 0.2).  If an 
antecedent is phrased using one of these functions, and it tests 
true, it will count as 1.0 in determining the combined certainty 
for the rule.

c) If a rule reaches a conclusion that has already been produced by 
some other rule (i.e. the conclusion is an OR node), then the new 
certainty is  
 

C1 + C2 * (1 - C1) -- where C1 is the old certainty  
and C2 is the certainty factor from the new rule.  
 

Thus, if several separate lines of reasoning lead to the same  
conclusion, then the confidence in that conclusion is 
strengthened - but can never exceed 1.0.

E. The approaches to reasoning with uncertain information we have 
considered are but two of many.  This remains an open research 
question, where researchers seek to find a system that strikes a good 
balance between:

1. Theoretical rigor

2. Practical usefulness

II.Discussion of Dreyfus Reading (do all but last as entire class if time is 
short - last certainly do in groups) 

A.For the two tasks at the start of the chapter

1. For which task(s) did you give the correct answer?  

2. For which task(s) did you give the incorrect answer?

�9



3. Which task did you find harder?  Why?

B. The Dreyfus brothers draw a distinction between “knowing that” and 
“knowing how”.  What is the distinction?  What examples do they cite 
to illustrate the difference between the two?  
 
(Answers from book) 

1. Driving a shift car - suddenly thinking about rules for the correct 
gear.

2. AF flight evaluator suddenly confronted with an emergency in a 
plane he is an expert on after getting out of practice.

3. A/D 4/7 game vs check approval rule (formally same, but one much  
harder)

C. Dreyfus titled this chapter “Five Steps from Novice to Expert”.   What 
are the five steps?   What characterizes each?   What role do rules and 
“deliberative rationality” play at each step?  
 

(Answers from book)

1. Novice (context free rules)

2. Advanced Beginner (situational rules)

3. Competent (sense of goals; what is important; “problem-solving” 
approach)

4. Proficient (intuition instead of just deliberation)

5. Expertise (fluidity; arationality) 

D.Does what Dreyfus describes ring true in your own experience of 
developing expertise in various areas? 
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E. Dreyfus describes the relationship between rationality and expertise 
by using the term "arationality".  What does he mean by this?

F. Discussion question for small groups: What would Dreyfus say is the 
highest level of expertise a computer program based on rule-following 
could attain?  Do you agree or disagree?  Why?  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